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We study a spontaneous relaxation dynamics of arbitrarily shaped liquid drops on solid surfaces in the partial
wetting regime. It is assumed that the energy dissipated near the contact line is much larger than that in the
bulk of the fluid. We have shown rigorously in the case of quasi-static relaxation using the standard mechanical
description of dissipative system dynamics that the introduction of a dissipation term proportional to the
contact line length leads to the well-known local relation between the contact line velocity and the dynamic
contact angle at every point of an arbitrary contact line shape. A numerical code is developed for three-
dimensional drops to study the dependence of the relaxation dynamics on the initial drop shape. The available
asymptotic solutions are tested against the obtained numerical data. We show how the relaxation at a given
point of the contact line is influenced by the dynamics of the whole drop which is a manifestation of the
nonlocal character of the contact line relaxation.
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I. INTRODUCTION

The spreading of a liquid drop deposited on a solid sub-
strate has many technological applications stimulating active
research on acquiring accurate knowledge on its relaxation
that follows the deposition. More specifically, one is inter-
ested to know how the relaxation rate depends on the initial
drop shape and the properties of the contacting media. It is a
complex theoretical problem and there are numerous studies
devoted to drop relaxation using different approaches and
techniques: e.g., macroscopic �1–7� and more recent micro-
scopic approaches using molecular dynamic simulations,
�8,9� and Monte Carlo simulations of three-dimensional �3D�
lattice gas �10� and 2D �11� and 3D Ising models �12�, etc.,
to mention just a few.

In the case of partial wetting this problem turns out to be
very difficult because of the presence of the triple gas-liquid-
solid contact line. Since the work �1�, it has become obvious
that the contact line motion cannot be described with the
classical viscous hydrodynamics approach that uses the no-
slip boundary condition at the solid surface. The velocity
ambiguity at the moving contact line leads to the unphysical
divergences of the hydrodynamic pressure and viscous dissi-
pation. Multiple approaches were suggested to overcome this
problem. Among the most popular solutions one can name a
geometrical cutoff �5� or the local introduction of the slip
near the contact line �6�. One finds experimentally �13,14�
that while the dissipation is finite, it is very large with respect
to the bulk viscous dissipation. Several physical mechanisms
are suggested to describe the contact line motion �15,16�.

Following a suggestion in Ref. �5�, a combined approach
was proposed in Ref. �17� considering both the bulk viscous

dissipation and the dissipation occurring at the moving con-
tact line, to study the drop relaxation in the partial wetting
regime. A phenomenological dissipation per unit contact line
length was introduced. It was taken to be proportional to the
square of the contact line velocity vn �the first term symmet-
ric in vn� in the direction normal to the contact line. There
the standard mechanical description of dissipative system dy-
namics was applied to describe the time evolution of the
drop contact line in the case of a spherical cap approximation
for the drop shape in the quasistatic regime. Considering the
drop as a purely mechanical system, the driving force for the
drop spreading was balanced by the rate of total dissipation.
No assumption was made for a particular line motion mecha-
nism.

This approach was further generalized to any contact line
shape in Ref. �18� by writing the energy dissipated in the
system per unit time as

T = � �vn
2

2
dl , �1�

where the integration is over the contact line of the drop and
� is the dissipation coefficient.

In the present work we employ this approach to study the
quasistatic relaxation of arbitrarily shaped drops in the par-
tial wetting regime. It is assumed here that the energy dissi-
pated near the contact line is much larger than that in the
bulk of the fluid. In Sec. II we show that this approach ac-
tually leads to the local relation �first obtained in the
molecular-kinetic model of contact line motion of Blake and
Haynes �15�� between the contact line velocity and the dy-
namic contact angle at every point of an arbitrarily shaped
contact line. In Sec. III we describe a numerical 3D code for
studying the relaxation of an arbitrarily shaped drops starting
directly from the variational principle of Hamilton, taking
into account the friction dissipation during the contact line
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motion. In Sec. IV we obtain numerically and discuss the
quasistatic relaxation of a drop with different initial shapes.
Section V deals with our conclusions.

II. THE MODEL

We consider a model system consisting of a 3D liquid
drop placed on a horizontal, flat, and chemically homoge-
neous solid substrate. Both the drop and the substrate are
surrounded by an ambient gas and it is assumed that the
liquid and the gas are mutually immiscible. Initially the drop
deposited on the substrate is out of equilibrium. Under the
action of the surface tension, the incompressible liquid drop
relaxes towards spherical cap shape. The drop is assumed to
be small enough so that the influence of the gravitation on its
shape can be neglected. According to the capillary theory
�19,20�, the potential energy of the system is

U = Alg�lg + Als�ls + Asg�sg, �2�

where the surfaces Alg ,Als, and Asg �with corresponding sur-
face tensions �lg ,�ls, and �sg� separate the liquid/gas, liquid/
solid, and solid/gas phases respectively. In accordance with
the approach described in Refs. �15,17,18�, we assume that
with the moving contact line a dissipation function T is re-
lated, given by Eq. �1�.

According to the variational principle of Hamilton one
writes

�
t0

t1

��K + �W�dt = 0, �3�

where �W is the virtual work of the active forces and �K is
the variation of the kinetic energy of the system. The virtual
work is �W=−�U+�W1, where �W1 is the virtual work re-
lated to the friction dissipation �1�. A class of virtual dis-
placements is considered in Eq. �3� satisfying the conditions
of immiscibility, of conservation of the area of the solid sur-
face, and the condition of constant volume V. Since the La-
grangian is L=K−U, the variational condition given by Eq.
�3� can be put in the following form:

�
t0

t1

��L + �W1�dt = 0. �4�

The contribution of the kinetic energy of the fluid motion is
assumed to be negligible because we consider a quasistatic
relaxation here, so that L=−U.

The radius vectors R� of the points of the liquid/gas inter-
face Alg are taken as generalized coordinates. These coordi-
nates are not independent, their displacements have to satisfy
the condition of constant drop volume. Taking into account
this condition by introducing a Lagrange multiplier � and
adding the term �V into Eq. �4� one obtains

�
t0

t1

�− �U + �W1 + ��V�dt = 0. �5�

The Lagrange multiplier � �its physical meaning is the pres-
sure jump across the drop surface Alg� varies in time. So in
the quasistatic regime one has the following equation:

− �U + �W1 + ��V = 0, �6�

where �W1 is given by �see, e.g., Ref. �21��

�W1 = − ��
L

vn�R� dl . �7�

The variation of the potential energy under the constant vol-
ume constraint reads �19�

��− U + �V� = �
Alg

�2�lgk − ���R� dAlg

+ �lg�
L

�cos �eq − cos ���R� dl , �8�

where k is the mean curvature of the liquid/gas interface

Alg ,�R� is the virtual displacement of the points normal to the
drop surface Alg in the first and to the contact line L in the
second integrals, respectively, � is the dynamic contact
angle, and �eq is the equilibrium contact angle defined by the
well-known Young equation

cos �eq = ��gs − �ls�/�lg. �9�

Substituting Eqs. �7� and �8� in Eq. �6� and taking into ac-
count the independence of the virtual displacements of the
points of the interface Alg and of the contact line L �due to
which each of the integrands must be equated to zero sepa-
rately�, one obtains the Laplace equation

− 2�lgk + � = 0, �10�

from which the surface shape can be obtained at any time
moment and the equation

�cos �eq − cos ��R� �� =
�

�lg
v�n�R� �, R� � L �11�

valid at the contact line. Equation �11� serves as a boundary
condition for Eq. �10�. For a given volume V and arbitrary
initial contact line position L0, Eqs. �10� and �11� define the
evolution of the drop shape and of the drop contact line.
However, in our calculations we will not use Eqs. �10� and
�11� directly, we will use Eqs. �6� and �7� instead.

The final drop shape is that of a spherical cap. The radius
R* of its contact line serves as a characteristic length scale.
The time

�0 = R*�/�lg �12�

defines a characteristic time scale.
When the spherical cap approximation can be used for the

drop shape then at any moment of time only one parameter is
needed to specify the instantaneous configuration of the
drop: either the time-dependent base radius R�t� or the dy-
namic contact angle ��t�. The drop volume conservation con-
dition implies a relationship between R�t� and ��t�:

R3�t� =
3V

�

�1 + cos ��t��sin ��t�
�1 − cos ��t���2 + cos ��t��

. �13�

Thus Eq. �11� leads to the following ordinary differential
equation for the dynamic contact angle ��t� �22�:
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d�

dt
= � �

3V
�1/3

	�1 − cos ��t���2 + cos ��t��2
2/3

	�cos ��t� − cos �eq� . �14�

Note, that the well known dependencies ��t�� t−3/7 and
R�t�� t1/7 �see, e.g., Refs. �17,22,23�� are asymptotic solu-
tions of Eqs. �13� and �14� for small contact angles.

Nikolayev and Beysens �18� considered the relaxation of
an elongated drop by assuming its surface to be a part of a
spheroid at any time moment. The contact line is then ellipse
with half axes R*�1−rx� and R*�1+ry� where the relative
deviations rx and ry were assumed to be small 0
rx ,ry �1.
Such an approximation can be adequate at the end of the
relaxation. However, it allowed only the case �eq
� /2 to be
considered. Nikolayev and Beysens obtained exponential
asymptotic solutions for rx�t� and ry�t�. Two relaxation times
were identified. One of them appears when the drop surface
is a spherical cap, i.e., when rx�0�=−ry�0�:

�s = �0/�sin2�eq�2 + cos �eq�� . �15�

When the initial contact line is an ellipse with rx�0�=ry�0�,
the relaxation time obtained using spheroidal approximation
reads

�n = 45�0�1 + cos �eq�/��108 + 41 cos �eq + 14 cos2�eq

+ 17 cos3�eq��1 − cos �eq�� . �16�

III. DESCRIPTION OF THE NUMERICAL
ALGORITHM

The following numerical algorithm was implemented.
First, for a given position of the contact line and fixed vol-
ume V the equilibrium drop shape is determined. Then the
normal projection of the velocity at every point of the con-
tact line is obtained by the help of Eqs. �6� and �7�. Next,
from the kinematics condition

dR�

dt
= v�n, �17�

the contact line position at the next instant of time is found
explicitly. The above algorithm is repeated for the successive
time steps.

The main ingredients of this algorithm are the determina-
tion of the equilibrium drop shape with given volume and
given contact line, and the calculation of the velocity of the
contact line. The drop shape algorithm is essentially an itera-
tive minimization procedure based on the local variations
method �24�. Here, only a very concise description will be
given; more details can be found in Ref. �25�. The drop
shape is approximated by a set of flat triangles with total of
N=12781 vertex points, NL=360 of these are located at the
contact line �see Fig. 4�. For a given contact line, the area of
the drop surface is expressed in terms of the coordinates of
the N points. The change of the drop shape is achieved by
approximation of the virtual displacements. In the 3N−3NL
coordinate space, the set of all possible displacements of N
−NL points is considered while keeping the volume and the

contact line constant. We use the Monte Carlo scheme for
choosing the points which we will try to move. At every
iteration step the drop shape is changed in such a way that
the free energy decreases while the drop volume is kept con-
stant. Thus eventually the minimal drop surface is found.

The approximation of the normal projection of the veloc-
ity of the contact line at each of the NL=360 vertex points of
the contact line is obtained by solving the finite approxima-
tion of Eq. �6�. The method takes into account that the finite
approximation of Eq. �6� is described by energy and volume
variations under displacements of these points. The correct-
ness of the obtained solution at every time step is checked by
keeping track of the accuracy with which the coordinates of
the points from the surface satisfy the Laplace condition and
Eq. �11�. For given contact line and volume, the initial ap-
proximation of the drop shape is found in the following way.
First, for the given volume we find the spherical cap approxi-
mation. Then we perform an iterative procedure which trans-
forms the contact line gradually while the volume is kept
fixed until the desired contact line is obtained.

In order to ensure better work of the minimization proce-
dure, we perform regular check of the surface mesh and re-
adjust the mesh to keep the approximation of the liquid/gas
interface uniform. This allows us to maintain high accuracy
in determining the contact angle with an error of the order of
0.01°. At a given contact line node point the contact angle is
defined as the angle between the plane of the substrate and
the plane of the triangle whose corner coincides with that
point.

IV. RESULTS AND DISCUSSION

A. Spherical cap relaxation

To test the described above 3D code, we check it against
the numerical solution of Eqs. �13� and �14� obtained for a
broad interval of values of the equilibrium contact angle �eq.
The initial contact line radius differs from its equilibrium
�final� value R*, the deviation being �R0=R�0�−R*. As fol-
lows from Eq. �12�, we can set R*=1 and �0=1 without a
loss of generality.

A comparison of the numerical data, obtained by both
methods and displayed in Fig. 1, shows a very high �less than
1%� accuracy of the 3D code. It can be seen from Fig. 1 that
for the same values of �eq and ��R0� the solutions for reced-
ing contact line R�0�R* and advancing contact line R�0�

R* differ. This follows directly from Eqs. �11� and �13�
since the following inequality holds:

�cos ��R*� − cos���R*� + ���� � �cos ��R*�

− cos���R*� − ���� .
�18�

By substituting this inequality in Eq. �11� it follows that for
the same absolute value of the deviation ��R0� there is a
difference in the initial velocities for advancing and receding
contact lines.

We studied the possibility to fit the obtained numerical
solutions for R�t� by power and exponential functions. We
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use the following definition of the relative error of the fit R�t�
with respect to R�t�:

� = max
t=0

t* � �R�t� − R�t��
�R�t� − R*�

� . �19�

For small initial deviations ��R0�, it turns out that the expo-
nential fit with

R�t� = R* + ��R0�exp�− t/�� , �20�

where � is the only fitting parameter, describes very well the
data for all studied values of �eq. The relaxation time � de-
pends on the initial deviation �R0 and when ��R0�→0,�
tends to the spherical relaxation time �s �Eq. �15��.

We first obtained the solutions for ��R�t�� by the 3D nu-
merical simulation for initial deviation ��R0�=0.03 and for
contact angles 15° ��eq�165°. By fitting the obtained so-
lutions with exponential decay function we determined the
corresponding relaxation time � as function of the equilib-
rium contact angle �eq in the above interval of values. This
dependence is shown in Fig. 2: the squares are the results for
�R0=−0.03 and the open triangles are for �R0=0.03. The
thin solid line in the figure is the spherical relaxation time �s
�see Eq. �15�� in the interval �eq
90°. The exponential ap-
proximations of the solutions are obtained in the time inter-
val �0, tend

100� determined so that �R�tend
100�−R*�=0.01�R�0�−R*�,

that is the amplitude of the initial deviation has decreased
hundred times. The exponential approximation is obtained
under the condition that it coincides with the numerical so-

lution at the initial and final points 	0, tend
100
. The maximal

relative deviation of the obtained exponential approxima-
tions from the numerical solutions does not exceed �
3%.
When ��R0� decreases the precision of the exponential ap-
proximation increases. When ��R0� increases, e.g., ��R0 �
=0.1, 0.2 the precision of the exponential approximation to
the numerical solution of Eqs. �13� and �14� in the time in-
terval �0, tend

100� decreases.
When the equilibrium contact angle �eq increases the rela-

tive deviation � decreases. The cases of advancing and re-
ceding contact lines differ with less than 1–2 % for �eq
�40°. Also when ��R0� increases, so does the deviation of
the relaxation exponent � �Eq. �20�� from the spherical relax-
ation time �s. When the exponential approximation in the
interval �0, tend

100� becomes unacceptable, e.g., when � more
than 3%, or − 1

3R*��R�3R* then a good approximation
could be obtained either by splitting the interval �0, tend

100� into
several subintervals and approximating the numerical solu-
tion on every such subinterval with an exponential function
with a specific relaxation time � or by fitting the numerical
solution with a second or higher order exponential decay
function. For example, for the considered cases
��R0 � =0.1,0.2 the fit with an exponential decay function of
the second order

R�t� = R* + a1exp�− t/�1� + a2exp�− t/�2�; �a1� � �a2� ,
�21�

where a1 ,�1 ,a2 ,�2 are the fitting parameters, on the interval
�0, tend

100� becomes much better than with the first order expo-
nential decay function �Eq. �20�� especially for �eq
40°. For

TABLE I. Relative deviation � of the exponential approximation of second order

�s /�0 a1 �1 /�0 a2 �2 /�0 �

�eq=10° 11.1 −0.08 10.8 −0.02 3.9 2.7%

�eq=40° 0.87 −0.084 0.866 −0.016 0.35 1%

�eq=70° 0.48 −0.092 0.484 −0.008 0.248 0.08%

FIG. 1. �Color online.� Time dependence in �0 units of the ab-
solute value of the deviation of the contact line radius from the
equilibrium value ��R�t�� in R* units for �eq=40° calculated for a
drop with a spherical cap shape. Solid and dashed lines: solutions of
Eqs. �14� and �13� for R�0�
R* and R�0�R*, respectively.
Squares and triangles: numerical 3D calculations for R�0�
R* and
R�0�R*, respectively �for convenience, every 20th data point is
displayed�.

FIG. 2. �Color online.� The spherical cap relaxation time � in �0

units as function of the equilibrium contact angle �eq for initial
deviation ��R0�=0.03 in R* units: the solid squares are the results
for �R0=0.03; the empty triangles are the results for �R0=−0.03
and the solid line is �s �Eq. �15�� for �eq
90°.
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example for �eq=40° and �R0=−0.1 the maximal deviation
with Eq. �21� is less than 1% as compared to 10% with Eq.
�20�. As can be seen from Table I , �1 is close to �s and the
amplitude a2 is sufficiently large so that the influence of the
second exponent should not be neglected. When the equilib-
rium contact angle �eq→� /2 the second amplitude a2 de-
creases. For contact angles �eq� �0,� /2� the amplitude a2 in
the case �R0=0.1 is smaller than in the case �R0=−0.1. For
contact angles �eq� /2 the opposite is true.

For small contact angles, e.g., �eq=3°, 5° we tried to fit
our data also with a power function f � t1/7. It appears that it
is possible to find a time interval at the beginning where the
numerical data is well described by the power function but
the overall behavior is still better described by the exponen-
tial approximation.

B. Relaxation of elongated drops

Here we consider the relaxation of a liquid drop when the
initially elliptical contact line �with initial deviations rx�0�
=ry�0�= ��R0�0� relaxes towards circular contact line. We
study the time relaxation rx�t� and ry�t� of the two extreme

points M and N of the ellipse, where R*�1−rx� and R*�1
+ry� are the half axes of the contact line ellipse. The goal is
to check the validity of the spheroidal approximation in Ref.
�18� and extend the results to the domain �90°. The analy-
sis of the data obtained by the method described in Sec. III
shows that the time relaxation for initial deviations up to
rx�0�=0.2 is again well described by an exponential decay
function of the first or second order �i.e., by the sum of two
exponential functions with different relaxation times� in the
time interval �0, tend

100�. The error of the fit is �
3%. The
obtained values for the relaxation time � �Eq. �20�� for con-
tact angles in the interval 15° ���165° ,rx�0�=0.03, are
shown in Fig. 3. For 15° ��eq�50° the relative deviation
from Eq. �16� is of the order of 2-4 %. Outside of this inter-
val it increases fast and for �eq�90° it reaches �60%. The
increase of the deviation is due to the fact that the approxi-
mation of the spheroidal cap to the quasistationary drop
shape is worsening with the increase of the contact angle �eq.
Note that while the surface curvature k has to remain con-
stant along the surface according to Eq. �10�, it varies as
much as 20% for the spheroid with rx�0�=0.1. In the 3D
simulation, the curvature variation along the surface is less
than 0.5% which is a good accuracy.

The numerical results for �eq=120° and rx�0�=0.2, are
shown in Figs. 4–7. The results for other contact angles look

FIG. 3. �Color online.� The relaxation time for the elongated
drop in �0 units as a function of the equilibrium contact angle �eq

for ry�0�=rx�0�=0.03 in R* units: the solid squares and empty dia-
monds are the results for the exponential fits of rx�t� and ry�t�,
respectively. The solid line is �n �Eq. �16�� for �eq
90°.

FIG. 4. �Color online.� The initial drop shape with elliptical
contact line and minimal surface for �eq=120° , rx�0�=0.2 in R*

units and volume V /R*3=5.44.

FIG. 5. �Color online.� The contact line positions obtained with
time step �0.2�0� for �eq=120° and rx�0�=0.2 in R* units. The
dashed line is the initial position.

FIG. 6. The contact angle as a function of the polar angle � at
successive moments of time 	0,0.2n ,n=1,2 ,…
 in �0 units for
�eq=120° and rx�0�=0.2.
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qualitatively the same way. The initial drop shape is shown
in Fig. 4. The volume of the drop is chosen so that the final
shape is the spherical cap with a radius of the contact line
R*=1 and a contact angle �eq=120°. The contact line evolu-
tion is shown in Fig. 5. The time evolution of the contact
angle along the contact line is shown in Fig. 6.

The algorithm efficiency can be checked against Eq. �11�
which was not directly used. Figure 6 shows how good the
algorithm precision is: the difference between the slopes of
the two straight lines is less than 2%.

Note that for equal initial deviations rx�0�=ry�0� at M and
N the initial contact angles and the initial velocities at both
points are different. From the fact that the relaxation times
for both rx and ry are close �when exponential approximation
Eq. �20� is used� it does not follow that the velocities of both
points are close as it would seem if one simply differentiates
Eq. �20� with respect to time t. This can be seen if one
examines carefully Figs. 6 and 7. When the initial deviations
are in the interval �− 1

3R* ,3R*� then a good approximation
could be obtained either by splitting the time interval into
several subintervals and approximating the numerical solu-
tion on every such subinterval with an exponential function
with a specific relaxation time � or by fitting the numerical
solution with a sum of two or more exponential functions.

C. Drops of complicated shapes

We study here the relaxation of drops with some example
contact lines to demonstrate how the relaxation at one point
of the contact line is influenced by the dynamics of the whole
contact line. Consider the relaxation of a drop which is al-
most a spherical cap except for a local perturbation around
one point of the contact line. More specifically, let us con-
sider the relaxation of a drop with a final equilibrium contact
angle �eq=50° and with the initial contact line shown in Fig.
8. We find that the time relaxation of the point A�1.1, 0� is
well approximated by an exponential decay function �21� of
the second order: a1=0.066,�1=0.163,a2=0.024,�2=0.88
and the relaxation of the point B�−1,0� by the exponential
decay function �20� of the first order with �=1.05. All the
three relaxation times 	0.163, 0.88, 1.05 differ from each
other and from the relaxation times for spherical and elon-
gated drops �s=0.65,�n=1.43 found for �eq=50° from Eqs.
�15� and �16�. It appears thus that the relaxation of the point
B is influenced by the perturbation around the point A.
Moreover even the type of the relaxation of the point B,
whose neighborhood is a part of circle, is not universal and
depends on the deformation around the point A. For ex-
ample, when the contact line is of the type shown in Fig. 9
we obtain that the relaxation of the point B is as shown in
Fig. 10. It is possible even to find a deformation around A
such that the relaxation of the point B is practically linear in
a broad time interval.

FIG. 7. �Color online.� The dependence of the function f���
= �cos ��t�−cos �eq� on the contact line velocity at two contact line
points �N and M� for �eq=120° and rx�0�=0.2 in R* units. The solid
line corresponds to v=dry /dt, and dashed line to v=drx /dt �in
R* /�0 units�.

FIG. 8. �Color online.� The contact line of a drop which is
almost a spherical cap with a small deformation around one point.

FIG. 9. �Color online.� The contact line of a drop which is
almost a spherical cap with larger deformation around the point A.

FIG. 10. Time dependence in �0 units of �R�t� in R* units at the
point B for a drop with initial contact line shown in Fig. 9.
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V. CONCLUSIONS

We have described a method and applied it to simulate the
quasistatic relaxation of drops with different initial 3D
shapes starting directly from the variational principle of
Hamilton, taking into account only the large dissipation in
the vicinity of the contact line during the contact line motion.

We have shown rigorously for arbitrary contact line shape
using the standard mechanical description of dissipative sys-
tem dynamics that the introduction of a friction dissipation
term proportional to the contact line length in the case of
quasistatic relaxation leads to the well known local relation
between the contact line velocity and the dynamic contact
angle.

We find in the case of spherical cap approximation that
the time relaxation of the contact line radius is very well
described by an exponential decay function of the first or the
second order depending on the magnitude of the initial de-
viation. The relaxation time � depends on the initial devia-
tion �R0 and when ��R0�→0,� tends to the spherical relax-
ation time �s defined in Ref. �18�. For higher values of ��R0�,

e.g., ��R0�=0.1,0.2, the data is better described by the sum of
two exponentials with different relaxation times. The power
function fits do not describe well the data.

In the case of elongated drops, the relaxation is again very
well described by an exponential decay function. The relax-
ation time is within 2–4 % from that obtained with the spher-
oid approximation for the drop shape �18� in the range 15°
��eq�50°. For the larger angles, the relaxation time can
only be obtained by the described 3D numerical simulation.

Previously exponential relaxation is found in some ex-
perimental studies, e.g., in Ref. �26� and more recently in
Ref. �13�. Theoretically, exponential relaxation is found in
Ref. �18� and asymptotically at long times in Ref. �17�, as
well as in the Monte Carlo simulations of the Ising model for
drop spreading �12�.

By simulating the relaxation of drops of complicated 3D
shape, we showed that, although the local Eq. �11� is satis-
fied, the relaxation at a given point of the contact line is
influenced by the relaxation dynamics of the whole drop sur-
face. This is a manifestation of the nonlocal character of the
contact line motion.
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